
Simscape™

Getting Started Guide

MATLAB&SIMULINK®

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

T

Phone: 508-647-7000

The MathWorks, Inc. 1 Apple Hill Drive Natick, MA 01760-2098

Simscape[™] Getting Started Guide

© COPYRIGHT 2007-2023 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

September 2007	Online only	New for Version 2.0 (Release 2007b)
March 2008	Online only	Revised for Version 2.1 (Release 2008a)
October 2008	Online only	Revised for Version 3.0 (Release 2008b)
March 2009	Online only	Revised for Version 3.1 (Release 2009a)
September 2009	Online only	Revised for Version 3.2 (Release 2009b)
March 2010	Online only	Revised for Version 3.3 (Release 2010a)
September 2010	Online only	Revised for Version 3.4 (Release 2010b)
April 2011	Online only	Revised for Version 3.5 (Release 2011a)
September 2011	Online only	Revised for Version 3.6 (Release 2011b)
March 2012	Online only	Revised for Version 3.7 (Release 2012a)
September 2012	Online only	Revised for Version 3.8 (Release 2012b)
March 2013	Online only	Revised for Version 3.9 (Release 2013a)
September 2013	Online only	Revised for Version 3.10 (Release 2013b)
March 2014	Online only	Revised for Version 3.11 (Release 2014a)
October 2014	Online only	Revised for Version 3.12 (Release 2014b)
March 2015	Online only	Revised for Version 3.13 (Release 2015a)
September 2015	Online only	Revised for Version 3.14 (Release 2015b)
October 2015	Online only	Rereleased for Version 3.13.1 (Release 2015aSP1)
March 2016	Online only	Revised for Version 4.0 (Release 2016a)
September 2016	Online only	Revised for Version 4.1 (Release 2016b)
March 2017	Online only	Revised for Version 4.2 (Release 2017a)
September 2017	Online only	Revised for Version 4.3 (Release 2017b)
March 2018	Online only	Revised for Version 4.4 (Release 2018a)
September 2018	Online only	Revised for Version 4.5 (Release 2018b)
March 2019	Online only	Revised for Version 4.6 (Release 2019a)
September 2019	Online only	Revised for Version 4.7 (Release 2019b)
March 2020	Online only	Revised for Version 4.8 (Release 2020a)
September 2020	Online only	Revised for Version 5.0 (Release 2020b)
March 2021	Online only	Revised for Version 5.1 (Release 2021a)
September 2021	Online only	Revised for Version 5.2 (Release 2021b)
March 2022	Online only	Revised for Version 5.3 (Release 2022a)
September 2022	Online only	Revised for Version 5.4 (Release 2022b)
March 2023	Online only	Revised for Version 5.5 (Release 2023a)

Product Fundamentals

	6

Simscape Product Description	
Creating a New Simscape Model	
	Blocks
Data Logging Settings for New Mo	odel
Evaluating Performance of a DC Mo	tor
Essential Steps for Constructing a I	Physical Model 1
Step 1: Create New Model Using s	ssc_new
Step 2: Assemble Physical Networ	k
	nd Variable Targets 1
Step 4: Add Sources	
	Interface Blocks
Step 8: View Simulation Results .	

Product Fundamentals

- "Simscape Product Description" on page 1-2
- "Creating a New Simscape Model" on page 1-3
- "Evaluating Performance of a DC Motor" on page 1-6
- "Essential Steps for Constructing a Physical Model" on page 1-12

Simscape Product Description

Model and simulate multidomain physical systems

Simscape enables you to rapidly create models of physical systems within the Simulink® environment. With Simscape you build physical component models based on physical connections that directly integrate with block diagrams and other modeling paradigms. You model systems such as electric motors, bridge rectifiers, hydraulic actuators, and refrigeration systems by assembling fundamental components into a schematic. Simscape add-on products provide more complex components and analysis capabilities.

Simscape helps you develop control systems and test system-level performance. You can create custom component models using the MATLAB® based Simscape language, which enables text-based authoring of physical modeling components, domains, and libraries. You can parameterize your models using MATLAB variables and expressions, and design control systems for your physical system in Simulink. To deploy your models to other simulation environments, including hardware-inthe-loop (HIL) systems, Simscape supports C-code generation.

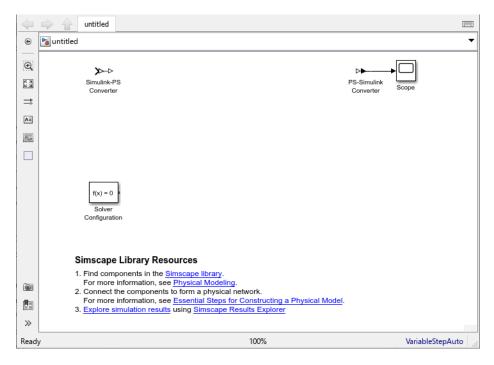
Key Features

- Single environment for simulating multidomain physical systems with control algorithms in Simulink
- Physical modeling blocks covering more than 10 physical domains, including mechanical, electrical, hydraulic, and two-phase fluid
- MATLAB based Simscape language, enabling text-based authoring of physical modeling components, domains, and libraries
- Symbolic equation reduction and solver technology for systems of differential algebraic equations (DAEs), including event handling
- Specialized solver technology for real-time simulation and hardware in the loop (HIL) testing
- Physical units for parameters and variables, with all unit conversions handled automatically
- Ability to simulate models that use blocks from Simscape add-on products without purchasing those products
- Support for C-code generation (with Simulink Coder™)

Creating a New Simscape Model

In this section...

"Domain Types and Recommended Blocks" on page 1-3

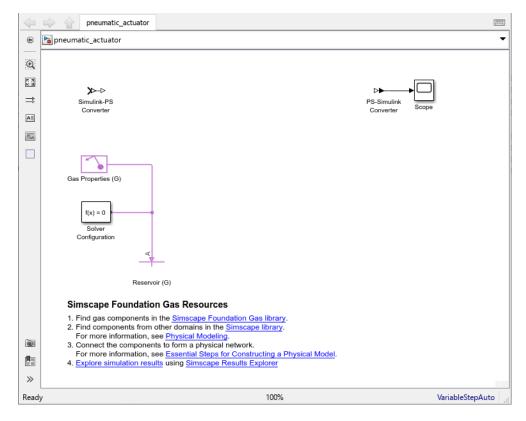

"Solver Settings for New Model" on page 1-4

"Data Logging Settings for New Model" on page 1-4

Domain Types and Recommended Blocks

Simscape models require certain blocks to be present in the model configuration, such as a Solver Configuration block, or domain-specific reference blocks. Other blocks, although not required, are highly likely to be needed, such as Simulink-PS Converter and PS-Simulink Converter blocks. An easy way to start a new Simscape model is by using the ssc new function.

When you type ssc_new at the MATLAB Command prompt, the software creates a new model prepopulated with certain blocks.



By default, the model name is not specified, the model contains a Solver Configuration block, a Simulink-PS Converter block, and a PS-Simulink Converter block connected to a Scope block. The default solver is VariableStepAuto. The resources section at the bottom of the model window provides links to the relevant block libraries and documentation topics.

You can use the ssc_new function arguments to specify the model name and add domain-specific blocks. See the ssc_new reference page for details. For example, typing

```
ssc new('pneumatic actuator','gas')
```

creates the following model.

After using ssc_new, continue developing your model by copying the blocks, as needed, and adding other blocks from the Simscape libraries.

For electrical models, you can also use the Creating A New Circuit example as a template for a new model. This example creates a new electrical model and opens an Electrical Starter Palette, which contains links to the most often used electrical components. Open the example by typing <code>ssc_new_elec</code> in the MATLAB Command Window and use <code>File > Save As</code> to save it under the desired model name. Then delete the unwanted components and add new ones from the Electrical Starter Palette and from Simscape libraries.

Solver Settings for New Model

When you create a new model using ssc_new, the model has the following settings:

- Solver VariableStepAuto
- Relative tolerance 1e-3
- Absolute tolerance 1e-3
- Auto scale absolute tolerance off

For more information, see "Simulating with Variable Time Step" and "Select Solver Using Auto Solver".

Data Logging Settings for New Model

Using data logging is a best practice for Simscape models because it provides access to important simulation and analysis tools. Therefore, the ssc_new function automatically turns on data logging

for the whole model. It uses the default workspace variable name simlog to store simulation data, and limits the data to the last 10000 points to avoid slowing down simulation. At the same time, it raises MaxDataPoints to 10000, so that Simulink data logging history matches Simscape data logging history.

When you create a new model using ssc_new, the model has the following data logging configuration:

- Log simulation data All.
- **Log simulation statistics** Off.
- Record data in Simulation Data Inspector Off.
- Open viewer after simulation Off.
- Workspace variable name simlog.
- Decimation -1.
- **Limit data points** On.
- Data history (last N steps) -10000.

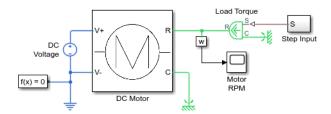
For information on what these settings mean and how to change them, see "Data Logging Options".

See Also

ssc new

More About

- "Select Solver Using Auto Solver"
- "Making Optimal Solver Choices for Physical Simulation"
- "Data Logging Options"


Evaluating Performance of a DC Motor

This example shows how to simulate systems that span electrical and mechanical domains. You learn how to model physical components with Simscape blocks, connect them into a realistic model, use Simulink blocks as well, and then simulate and modify a motor model.

The model is based on a Faulhaber Series 0615 DC-Micromotor. The model uses equivalent circuit parameters for the 1.5V motor to verify manufacturer-quoted no-load speed, no-load current, and stall torque. You can use the model to assess motor performance in a given application by adding the requisite mechanical load model.

Explore the Model

To open the Permanent Magnet DC Motor example model, type ssc_dcmotor in the MATLAB Command Window.

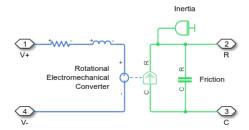
Main Model

The model contains a DC Motor subsystem with two electrical and two mechanical rotational ports.

For improved readability of block diagrams, each Simscape domain uses a distinct default color and line style for the connection lines. In this block diagram, for example, the electrical circuit is indicated by the dark-blue color of the connection lines, while the connection lines between the mechanical rotational ports are light-green. Physical signal lines are brown.

The electrical ports of the motor connect to the electrical circuit, which consists of an Electrical Reference block, representing an electrical ground, and a 1.5 V DC voltage source.

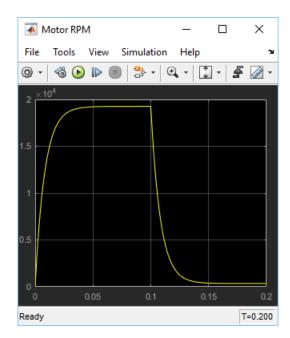
On the mechanical side, a Mechanical Rotational Reference block represents a reference point for the other elements.


The motor load is represented by the block named Load Torque, which is an Ideal Torque Source block. On one side it is connected to a Mechanical Rotational Reference block and on the other side to the motor shaft. The load torque is specified by the Step Input subsystem, connected through a physical signal to the control port S of the Load Torque block.

The Step Input subsystem contains a regular Simulink Step source, which provides the control signal. A Simulink-PS Converter block converts the control signal into a physical signal and applies it to the control port of the Load Torque block through the Connection Port block S.

The diagram also contains a Solver Configuration block, which is required in any Simscape model. It contains parameters relevant to numerical algorithms for Simscape simulations.

2 Double-click the DC Motor subsystem to open it.



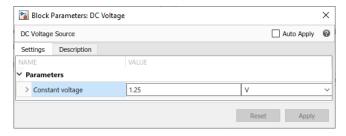
DC Motor Subsystem

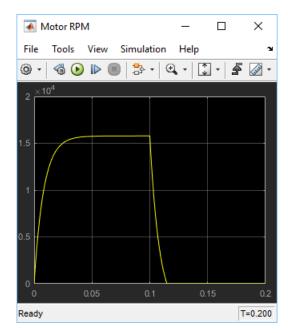
The motor consists of an electrical circuit and a mechanical rotational circuit, connected by the Rotational Electromechanical Converter block. The electrical circuit consists of a Resistor block and an Inductor block. It contains two electrical ports, corresponding to the V+ and V- electric terminals of the motor. The mechanical circuit contains a Rotational Friction block, an Inertia block, and two mechanical rotational ports, C and R, corresponding to the motor case and rotor, respectively. Notice how the C and R ports of the Rotational Friction block and the Rotational Electromechanical Converter block are connected to the C and R ports of the motor, to preserve the correct direction of variables in the physical network.

Run the Model

- 1 Double-click the Motor RPM scope to open it. During simulation, this window displays the shaft speed as a function of time.
- Click to start the simulation. The Simscape solver evaluates the model, calculates the initial conditions, and runs the simulation. This process might take a few seconds. The message in the bottom-left corner of the model window provides the status.
- **3** Examine the simulation results in the Motor RPM scope window.

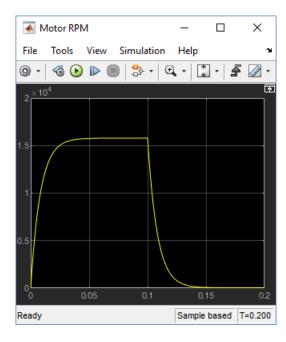
For the first 0.1 seconds, the motor has no external load, and the speed builds up to the no-load value. Then at 0.1 seconds, the stall torque is applied as a load to the motor shaft. Zooming in on the Motor RPM scope shows that the model matches the manufacturer parameters for no-load speed and stall torque.


The example model also shows how you can use MATLAB code to analyze the simulation results. To plot the current and load torque, click the Plot hyperlink in the model annotation. The current shown in the figure matches the manufacturer parameters for no-load current.


Change the Supply Voltage

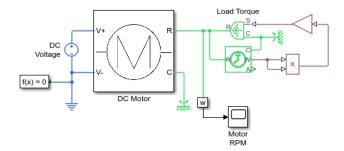
Reduce the supply voltage to 1.25 volts (to simulate the battery running down) and vary the load torque to find the maximum torque at this reduced voltage.

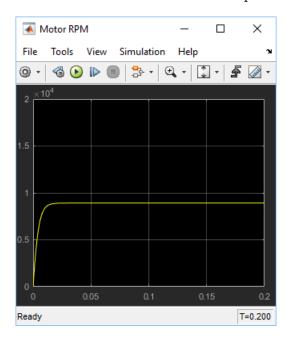
1 Double-click the DC Voltage Source block. Set **Constant voltage** to 1.25 V.



2 Run the simulation. Note the effect of reduced voltage on the no-load speed.

3 Try varying the load torque to find the maximum torque at this reduced voltage. Open the Step Input subsystem and double-click the Step source block. Enter different final values for the input signal and rerun the simulation.


The next illustration shows the simulation results for **Final value** set to -0.2e-3, which corresponds to (1.25/1.5)*0.24mNm, as the magnitude of the torque-speed curve is proportional to voltage for a DC motor.


Change the Motor Load

Replace the torque source with a simple mechanical load, for example, a fan, for which the torque is defined by alpha*speed^2, where alpha is -le-10 Nm/(rad/s)^2.

- **1** Delete the Step Input subsystem from the model.
- 2 In the Simscape block library, open Foundation Library > Mechanical > Mechanical Sensors.
- 3 Drag the Ideal Rotational Motion Sensor block to the model window.
- 4 Open Foundation Library > Physical Signals > Functions.
- **5** Drag the PS Product block and the PS Gain block to the model window.
- 6 Connect the blocks as shown in the following illustration. To rotate a block, select it and press Ctrl+R.

- 7 Double-click the PS Gain block. In the first edit box next to the Gain parameter, enter the value of -1e-10. In the second combo box, with the unit drop-down list, type the unit expression N*m/(rad/s)^2 and click Apply.
- **8** Run the simulation and assess motor performance with the new load.

Essential Steps for Constructing a Physical Model

In this section...

"Workflow Overview" on page 1-12

"Step 1: Create New Model Using ssc new" on page 1-13

"Step 2: Assemble Physical Network" on page 1-14

"Step 3: Adjust Block Parameters and Variable Targets" on page 1-16

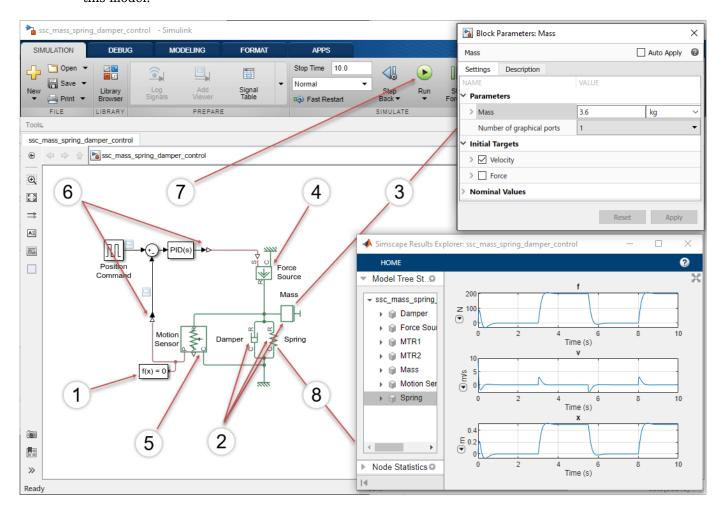
"Step 4: Add Sources" on page 1-17

"Step 5: Add Sensors" on page 1-18

"Step 6: Connect to Simulink with Interface Blocks" on page 1-19

"Step 7: Simulate Model" on page 1-23

"Step 8: View Simulation Results" on page 1-24


Workflow Overview

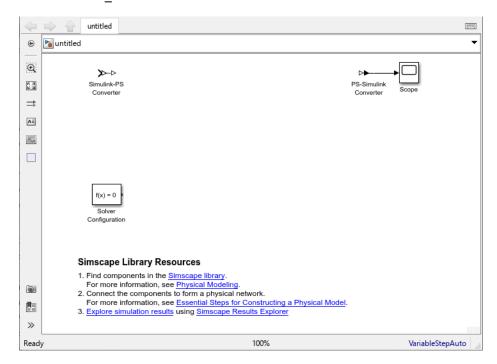
The table lists the essential major steps for building and simulating a physical model, along with related documentation topics that provide background information on each step. Detailed step descriptions follow.

Key Step	Related Topics
"Step 1: Create New Model Using ssc_new" on page 1-13	"Setting Up Solvers for Physical Models"
	Solver Configuration
"Step 2: Assemble Physical Network" on page 1-14	"Basic Principles of Modeling Physical Networks"
	"Essential Physical Modeling Techniques"
	"Modeling Best Practices"
"Step 3: Adjust Block Parameters and Variable Targets" on page 1-16	"Block-Level Variable Initialization"
J. J	"Variable Viewer"
"Step 4: Add Sources" on page 1-17	"Basic Principles of Modeling Physical Networks"
	"Connecting Simscape Diagrams to Simulink Sources and Scopes"
"Step 5: Add Sensors" on page 1-18	"Basic Principles of Modeling Physical Networks"
	"Connecting Simscape Diagrams to Simulink Sources and Scopes"
"Step 6: Connect to Simulink with Interface Blocks" on page 1-19	"Connecting Simscape Diagrams to Simulink Sources and Scopes"
"Step 7: Simulate Model" on page 1-23	"Important Concepts and Choices in Physical Simulation"
	"Troubleshooting Simulation Errors"

Key Step	Related Topics
"Step 8: View Simulation Results" on page 1-24	"About Simulation Data Logging"
	"About the Simscape Results Explorer"

The graphic illustrates the key workflow steps as applied to the "Mass-Spring-Damper with Controller" example model. Step descriptions below include detailed instructions on how to create this model.

Step 1: Create New Model Using ssc_new

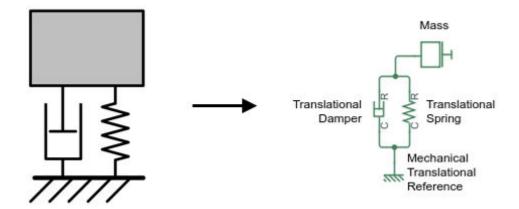

Using ssc_new is the best way to start building Simscape models. It helps to ensure that you use recommended default settings for your model. When you use ssc_new, it automatically:

- Creates a new Simscape model, with required and commonly used blocks already on the model canvas
- Selects recommended solver and tolerance settings
- · Enables data logging for the whole model

Detailed Instructions

In the MATLAB Command Window, type:

ssc_new

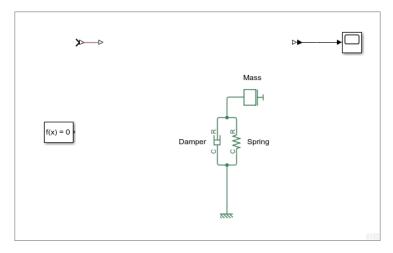


The new untitled model, with the default solver set to VariableStepAuto, contains a Solver Configuration block, a Simulink-PS Converter block, and a PS-Simulink Converter block connected to a Scope block.

The resources section at the bottom of the model window provides links to the relevant block libraries and documentation topics.

Step 2: Assemble Physical Network

To model your system, you add blocks from the Simscape libraries to a model, and then connect them into a physical network. The lines connecting the blocks in the schematic you create represent the physical connections that exist between the components in a real system that you are modeling. In other words, Simscape diagrams mimic the physical system layout.



When constructing your network, it is important to include domain-specific reference blocks, such as Electrical Reference, Mechanical Translational Reference, and so on. Depending on domain, these blocks represent connection to ground, frame, or atmosphere. For more information, see "Grounding Rules".

Detailed Instructions

- 1 Open the Simscape > Foundation Library > Mechanical > Translational Elements library.
- 2 Drag the Mass, Translational Spring, Translational Damper, and Mechanical Translational Reference blocks into the model window.
- 3 Connect the Translational Spring, Translational Damper, and Mass blocks to the Mechanical Translational Reference block as shown in the next illustration. To rotate a block, select it and press Ctrl+R.

To adjust visual presentation of the model, shorten the names of the Spring and Damper blocks, as shown. To have the name of the Mass block appear along with Spring and Damper, right-click the Mass block and, from the context menu, select **Format > Show Block Name > On**.

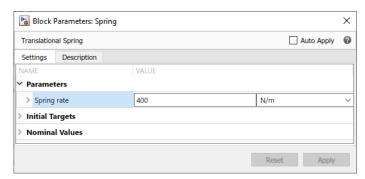
Step 3: Adjust Block Parameters and Variable Targets

Simscape blocks represent generic components that have default initial values for block parameters and variables. You can adjust these values to suit your application or match the manufacturer data sheet.

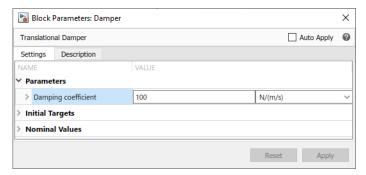
To view and modify the block parameter values and initialization targets for the block variables, double-click the block to open its dialog box. Use the **Settings** tab.

For most of the Simscape blocks, the block dialog box contains the same information and has the same layout as the block Property Inspector. By default, changing a value in the Property Inspector immediately applies the new value. For better control, it is recommended that you clear the **Auto Apply** check box in the upper-right corner of the block dialog box to enable the **Reset** and **Apply** buttons. This is especially helpful when working with complex blocks, where you change multiple parameters at once. Change the parameter values to match the manufacturer data sheet, review the whole set, and then click **Apply**. Clearing the **Auto Apply** check box persists for the duration of your MATLAB session.

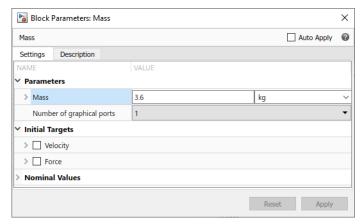
To view the description of a block, click the **Description** tab in the block dialog box. This tab also contains the **Source code** link. Click this link to open the Simscape source file for this block in the MATLAB Editor.

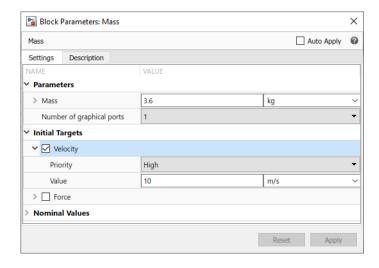

If a block has no parameters or variable targets that can be set, then the block dialog box does not have a **Settings** tab, only a **Description** tab.

To view the documentation for a block, click the Question Mark button in the upper-right corner of the block dialog box.


Detailed Instructions

In this model, you will adjust parameters that control the mass, the spring stiffness, and the damping coefficient. You will also specify the initial velocity of the mass by adjusting the respective variable target.


Double-click the Spring block. Clear the Auto Apply check box. Set Spring rate to 400 N/m and click Apply.

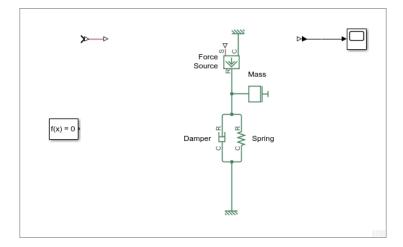

2 Double-click the Damper block. Set **Damping coefficient** to 100 N/(m/s).

3 Double-click the Mass block. Set **Mass** to 3.6 kg.

To specify the desired initial value for mass velocity, in the **Initial Targets** section, expand **Velocity**. The variable already has its **Priority** specified as **High**, which means that the solver will try to exactly satisfy this beginning value when it computes the initial conditions to determine the simulation starting point. Select the **Velocity** check box. In the **Value** field, type 10, then click **Apply**.

Step 4: Add Sources

You can drive Simscape models using input signals. This technique allows you to represent physical effects, such as forces, voltages, or pressures, that act on your system. You can also specify other


quantities that flow through your system, such as current, mass flow rate, and heat flux. You add signal input connections to your physical network by using Simscape source blocks.

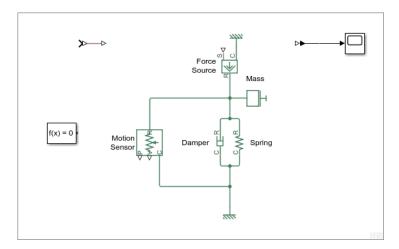
Detailed Instructions

To add the representation of the force acting on the mass, use the Ideal Force Source block.

- 1 Open the Simscape > Foundation Library > Mechanical > Mechanical Sources library.
- 2 Add the Ideal Force Source block to your diagram. Shorten the block name, as shown.
- 3 To reflect the correct direction of the force shown in the original schematic, flip the block orientation. With the Force Source block selected, on the Format tab of the Simulink Toolstrip, under Arrange, click Flip up-down.
- 4 Copy the Mechanical Translational Reference block by right-clicking it and dragging to a new location. Then flip the orientation of the new block using the same technique as with the Force Source block.
- 5 Connect port C of the Force Source block to this second Mechanical Translational Reference block and port R to the Mass block, as shown below.

The input signal for the force profile will be supplied through port S, after you connect the physical network to a Simulink source (see "Step 6: Connect to Simulink with Interface Blocks" on page 1-19). A positive signal at port S will specify a force that acts from port C to port R.

Step 5: Add Sensors

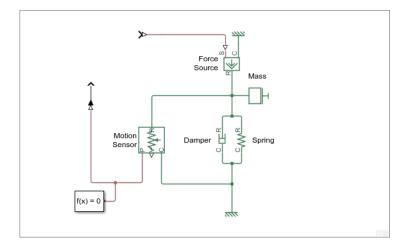

You can measure quantities from your physical network and use them in other locations in your model. Some common uses of those quantities include feedback for a control algorithm, modeling physical components whose behavior depends on other physical quantities (such as temperature-dependent resistor), or simply viewing the results during simulation.

You measure quantities using sensor blocks, connected in series or in parallel depending on the measured value. To measure a quantity defined by a Through variable (such as current, flow rate, force), connect the sensor in series. To measure a quantity defined by an Across variable (such as voltage, pressure, velocity), connect the sensor in parallel. For more information on Through and Across variables, see "Variable Types".

Detailed Instructions

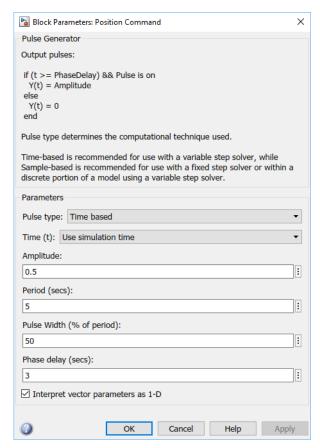
To measure spring deformation, connect an Ideal Translational Motion Sensor block in parallel with the spring.

- 1 Open the Simscape > Foundation Library > Mechanical > Mechanical Sensors library.
- **2** Add the Ideal Translational Motion Sensor block to your diagram.
- **3** To rotate the block, select it and press **Ctrl+R**.
- **4** Connect the block as shown in the next illustration. Shorten the block name, as shown.

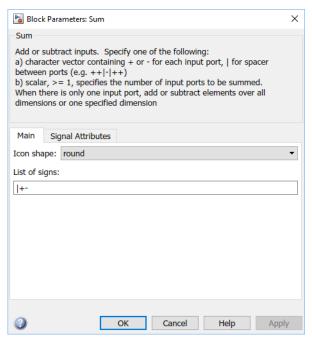

Step 6: Connect to Simulink with Interface Blocks

Equations in a Simscape network are solved simultaneously, while Simulink blocks are evaluated sequentially. Interface blocks, such as Simulink-PS Converter and PS-Simulink Converter, handle the boundary between these two modeling conventions. You need interface blocks when Simulink signals specify quantities in a Simscape network, or when passing Simscape quantities to Simulink for control design or other purposes. Every time you connect a Simulink block to a Simscape physical network, you have to use an appropriate converter block.

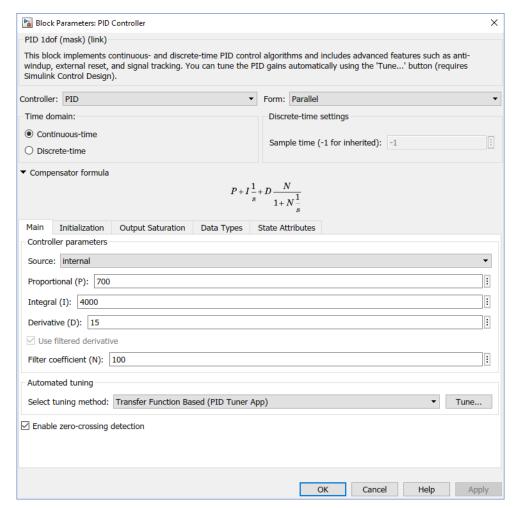
Detailed Instructions

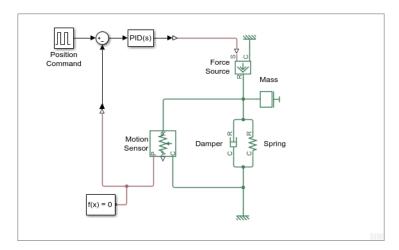

You are now going to connect your physical network to a controller built out of regular Simulink blocks. First, prepare the physical network to be connected to Simulink signals:

- **1** Delete the Scope block.
 - While you can use scopes to view simulation results, they add clutter to the block diagram. A more efficient way to view and analyze simulation results is to use the Simscape Results Explorer, as described in "Step 8: View Simulation Results" on page 1-24.
- **2** Connect the physical signal output port of the Simulink-PS Converter block to port S of the Force Source block.
- **3** Connect the output port P of the Motion Sensor block to the physical signal input port of the PS-Simulink Converter block.
- 4 Connect the Solver Configuration block to the circuit and hide the converter block names. Your diagram now looks like this.



Then, build and connect the controller:


1 Open the Simulink > Sources library and drag the Pulse Generator block into the model. Change the block name to Position Command. Set the block parameters as shown.


Open the Simulink > Math Operations library and drag the Sum block into the model. In the **List** of signs, replace the second plus sign with a minus sign, as shown.

3 Open the Simulink > Continuous library and drag the PID Controller block into the model. Set the **Proportional (P)**, **Integral (I)**, and **Derivative (D)** parameter values as shown.

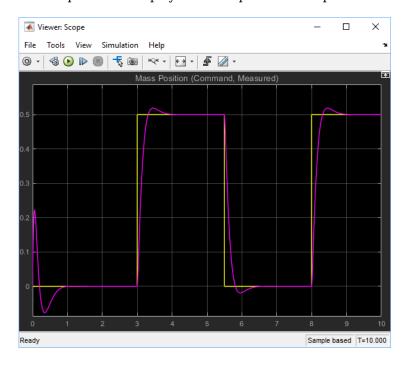
4 Connect the blocks as shown in the following diagram.

The control Simulink signal goes to the input port of the Simulink-PS Converter block, where it is converted into a physical signal driving the force profile of the Ideal Force Source block.

The output port P of the Ideal Translational Motion Sensor block, which measures the spring deformation, connects to the PS-Simulink Converter block. This block converts the physical signal into a feedback Simulink signal for the controller.

To compare the input and feedback signals, connect them to a signal viewer:

- Right-click the Simulink signal that goes from the Pulse Generator block to the Sum block. From the context menu, select **Create & Connect Viewer > Simulink > Scope**.
- Then, right-click the Simulink signal that goes from the PS-Simulink Converter block to the Sum block. From the context menu, select **Connect To Viewer > Scope**.


Step 7: Simulate Model

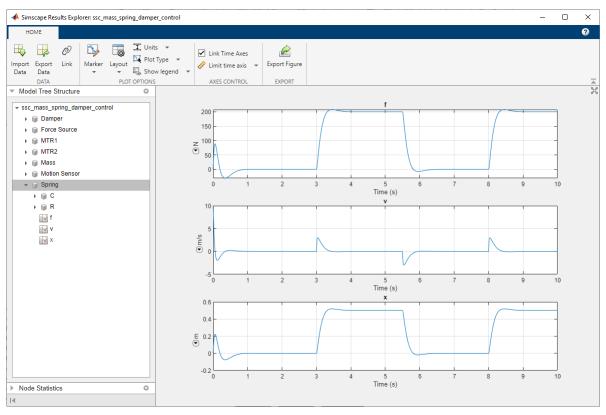
You run simulations by clicking the Run button in the Simulink Toolstrip (at the top of the model window) or in a Scope Viewer toolbar. The Simscape solver evaluates the model, calculates the initial conditions, and runs the simulation. For a detailed description of this process, see "How Simscape Simulation Works". The message in the bottom-left corner of the model window provides the status update.

Detailed Instructions

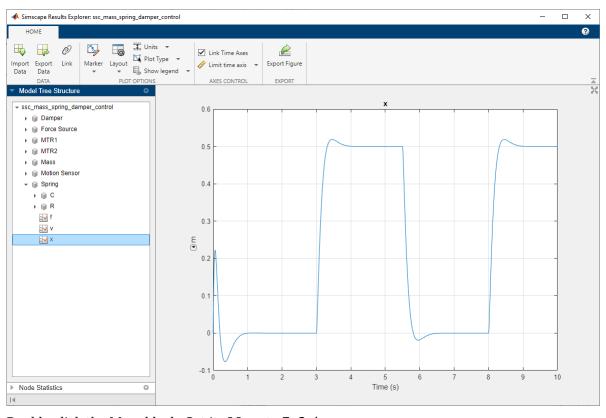
To run the simulation, click in the Simulink Toolstrip.

The Scope Viewer displays overlaid plots of the input and feedback signals.

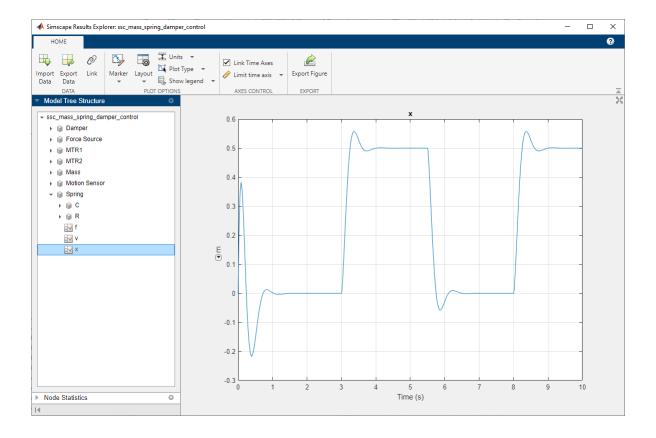
Step 8: View Simulation Results


The Simscape Results Explorer lets you view and analyze simulation data by using the data logging functionality. For example, you can compare two simulation runs to analyze how changing the mass affects the spring deformation.

Detailed Instructions


- **1** Right-click the Spring block.
- 2 From the context menu, select Simscape > View simulation data > simlog.

Note simlog is the default name of the log variable. If you change the variable name using the **Workspace variable name** model configuration parameter, the context menu lists that name as the log variable associated with the block.


The Simscape Results Explorer window opens, with the node corresponding to the Spring block highlighted in the left pane. The right pane displays the simulation data plots for the three variables associated with the block.

3 Under the Spring node, select node x. The right pane displays the spring deformation data plotted over time.

- 4 Double-click the Mass block. Set its **Mass** to 7.2 kg.
- **5** Rerun the simulation.
- To reload the logged data, click the **Import Data** button located in the toolbar of Simscape Results Explorer window. In the pop-up window displaying the log variable name, click **OK**.

Notes

- To have the data reload automatically after each simulation run, in the Configuration Parameters dialog box, in the **Simscape** pane, select the **Open viewer after simulation** check box.
- To explore the simulation results side by side, in two separate Simscape Results Explorer windows, click the **Linked** button after the first simulation run to unlink the first explorer window. For more information, see "About the Simscape Results Explorer".